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Abstract. An analytic approximation for the diffeomorphism of a homogeneous linear 
second-order differential equation is obtained in matrix representation. As a consequence 
of energy conservation for waves propagating in a non-absorbing stratified medium the 
corresponding transmission matrix belongs to the group QU(2). The approximation 
contains the WKB approximation and may be applied to discrete and continuous media. As 
an application of the method three specific problems are treated: calculation of the 
reflection coefficient, determination of the eigenmodes, and calculation of the adiabatic 
invariant for a damped classical harmonic oscillator. 

1. introduction 

The propagation of plane monochromatic waves in stratified inhomogeneous media is 
governed by the one-dimensional form of the amplitude equation (Landau and  Lifshitz 
1967),  

u ” - - ( v ’ / v ) ~ ’ + k * u  = 0, (1) 

where k ( x )  is the x component of the wavevector, i.e. the component normal to the 
strata, In the case of electromagnetic waves, the two polarizations must be dis- 
tinguished. If the electric field is perpendicular to the plane of incidence, u ( x )  denotes 
the complex amplitude of that field and v‘ = 0; for formal reasons we are going to use 
v = 1. In the other case U is the amplitude of the magnetic field and v ( x )  equals the 
dielectric constant. 

An equation of the same form, with x representing the time describes the motion of 
a damped harmonic oscillator with varying frequency k ( x )  and varying damping 
parameter. (In the usual notation the latter equals - v ’ / ( 2 ~ ) . )  The frequency may vary 
due to adiabatic changes or, in another extreme, due to parametric excitation (Landau 
and Lifshitz 1960, Arnol’d 1974, Jordan and Smith 1977).  

The  subsequent analysis is intended to derive an analytic approximation for the 
diffeomorphism (Nitecki 1971) corresponding to equation (1) and  valid for not too large 
and not too fast changes of the parameters k and v. The diffeomorphism which relates 
U ( X )  to the initial value u(x0) ,  will be represented by a transmission matrix G(x0, x ) .  
Once G is known, the general solution of equation (1) is completely determined. 

The  transmission matrix appears to be the fundamental tool of the present treat- 
ment of wave propagation in stratified media. With use of that matrix the formalism 
becomes simple and compact, which seems to be an advantage of the method. Indeed, in 
$0 7-9 it will be shown how easily some specific results can be derived. The  underlying 
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approximation will be seen to be more accurate than the first-order WKB approxima- 
tion, so that results in $ 9  7-9 appear as straightforward generalisations of the cor- 
responding WKB results. For these reasons the present matrix method might be 
regarded, in certain respects, as more effective than the WKB method. 

2. Matrix representation of the diffeomorphism 

The function u ( x )  will be assumed to take complex values, while the parameter v 
together with k shall be real and positive, which in the case of wave propagation 
excludes absorption. 

Let the solution U ( X )  be decomposed into travelling waves, 

v ( x )  
k ( x )  

~ ( x )  = (-) (A(x )  eikx +B(x)  e-'kx). 

If complex amplitudes A(x)  and B ( x )  are permitted, the splitting is not unique. I t  will be 
specified by the approximation worked out  in $84 and 5 and by the boundary 
conditions. For instance if the inhomogeneities are confined to the interval ( x o ,  x l ) ,  and 
we only have an incident wave from the left, its amplitude shall equal A(x)  for x < X O ,  

while B ( x )  = 0 for x > X I .  

It will be convenient to introduce a two-dimensional complex-amplitude vector 
U = (A ,  B ) .  We look for the transmission matrix G(xo, x)  which transforms v ( x 0 )  = uo 
into v ( x ) ,  i.e. 

U ( X )  = G ( x ~ ,  X ) U O .  (3) 

Obviously, one has to require G(x0, x o )  = Z, where Z is the identity matrix. With the 
vectorf = (v/k)1'2(e-ikx, elkx) and the usual notation for the inner product the solution U 
appears in compact form, 

(4) = ( U ,  f) = (Goo, f). 

3. Group property of transmission matrices 

In  the spirit of the geometrical-optics approximation we assume that changes of v and k 
over a few periods of U can be neglected. Then the net energy flow in the x direction 
averaged over a period is found to be proportional to the quasinorm 1 1 0 1 1  = lA12- IBl2 of 
the amplitude vector. Formally, this can be written as an inner product llvll= ( U ,  g Z u )  
with the aid of one of the Pauli matrices, 

Conservation of energy requires the quasinorm of the amplitude vector to remain 

(9) 

constant as x varies, hence 

(Goo, c+,G~o) = ( U O .  ( + ~ u o ) .  

G+U,G = 

This is equivalent to 
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where Gt is the adjoint of G. A general representation of G in terms of three real 
parameters easily follows (Vilenkin 1965) 

G = exp(i4crZ) exp(.ro;) exp(i4al), (6) 

or explicitly, 

The parameter r may be arbitrary, while 4 and 4 are confined to the interval [0,27r) if 
uniqueness of the representation is requested. Since G(xo, xo) = Z, the determinant of 
the transmission matrices must be 1. All matrices of this type form the group QU(2) 
(Vilenkin 1965). We also notice that Gll  = GTz and GL2 = GT1. (However, G is not 
self-adjoint except when 4 = -4.) This symmetry ensures that U remains real if its 
value was real initially. Such a situation describes a standing wave where the net energy 
flow vanishes. 

4. Differential equation for the transmission matrix 

Substitution of expression (4) into equation (1) results in 

([G" - (v ' /v)G'  + k 'G]~o ,  f) +([2G'- (Y ' /v )G]DO,  f) +(GDo, f") = 0. 

Since f' is linearly related to f, 

f' = -E'f, 

and because zlo is arbitrary, a differential equation for G itself follows, 

[G"- (v ' /v )G'+ k2Gi-E[2G - ( v ' / v ) G ] +  ( E 2  -E')G = 0.  

The substitution 

G' = HG (9) 

leads to a Riccati equation for the matrix H :  

H ' - E ' + ( H  - E ) H  - E ( H  - E )  - ( v ' / v ) ( H -  E ) +  k21 = 0.  (10) 

We shall attempt an approximate solution of this equation and then determine G from 
equation (9). 

I t  is interesting to note that the approximation H = E satisfies this equation up to 
terms of second order in k ,  and thus may be used for small frequencies. However, 
geometrical optics no longer applies and the resulting transmission matrices do not 
belong to the group QU(2). Moreover, the previously imposed conditions on the 
parameters Y and k become irrelevant. 

A consistent WKB approximation for H can hardly be derived from equation (10) 
directly. We therefore proceed by a different approach and subsequently verify how 
well equation (10) is obeyed. 
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5. Step-function approximation 

Now we imagine a continuously varying parameter k as approximated by a piecewise 
constant function with sufficiently small jumps. Then ,  in a neighbourhood around a 
single jump placed in the interval ( x ,  x +Ax) we neglect the derivatives of k. The  
Fresnel boundary conditions entering the calculation are that U and v-lu’ are  continu- 
ous at  the point of discontinuity of k. (The parameter v may also be discontinuous at  the 
same point.) A relation 

U+ = AG(Ax)u- (1 1) 

between the amplitude vectors U +  and u- t o  the right and  to the left, respectively, from 
the jump follows. The  corresponding parameters of the matrix AG(Ax) from QU(2), 
according to equation (6 ) ,  are 

(12) 
= -k+x, T=-ln(-), 1 k+v- + = k - x ,  

2 k-v+ 

i f  the discontinuity is at x .  With this result we can write 

G(x0, x +AX) = AG(Ax)G(xo, x) ,  

which still refers to the step function. However, in the limit Ax + 0 we hope to obtain 

G’ = lim [(Ax)-~(G(xo, x +Ax)  - G(xo, x))], 
A x + O  

corresponding now to the original function k(x) .  (At this step we have locally neglected 
the derivatives of k, which will become apparent by the calculation of the error (14) 
below.) 

Equation (9) then takes the form 

H = lim [(Ax)-’(hG(Ax) - I ) ] .  
A x - 0  

With the parameters 4, 7, 4 from (12) and a series expansion of the expressions in the 
intermediate result an explicit approximation follows: 

1 k‘ U ‘  

2 i k  v )  
H = - i k ’ x u , + -  --- [ax cos(2kx)+as  sin(2kx)l. 

We  verify that equation (10) is satisfied up to the error 

U, cos(2kx)-gs sin(2kx)l. 
k vk 

Obviously, the factor in front is small for smoothly varying k and v. Tc assess the 
accuracy of the approximation (13), which will be used in equation (9), we take 
v = constant and compare the first term of the error (14) with the last term of equation 
(10). We conclude that the approximation is justified if lk’/k212<< 1. O n  the other hand, 
the first-order WKB approximation, which is frequently used, is satisfactory provided 
lk’/k*/<c 1. Although a complete and  explicit comparison with the WKB method is 
lacking, we may state that the established approximation leads to results whose 
accuracy is comparable with the accuracy of the higher-order WKB results. Specific 
results obtained in §§ 7-8 confirm our  belief. 
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6. Approximate solution for the transmission matrix 

Since the matrices H and G do not commute, the solution of G ' = H G  with H from 
equation (13) is not trivial. The substitution 

r X  

G = exp( -ia, J y k ' ( y )  dy) N 
xo 

facilities the task. The matrix N is seen to obey the equation 

(16) 

where p = koxo+j:o k ( y )  dy is the phase. If the commutator [M,  j:o M ( y )  dy] vanishes, 
the exact solution of the last equation can be immediately given as exp(jzo M ( y )  dy).  
However, the commutator is generally equal to i h , ,  where 

1 k' U' 

2 k  v 
N'  = MN, M = - ( - - -) [ax cos(2.p + cy s i n ( 2 ~  )I, 

s = 2 ~m[s($)*], 

s = lxO5(~-:) e2ip dy. 
" 1  k' 

I t  is apparent that S is the relevant small parameter which determines the accuracy of 
the approximate solution. 

As already noted, for S ==O we obtain the following approximation for the trans- 
mission matrix: 

which turns out to be satisfactory in many cases. Looking at the expression (6) and 
doing some manipulations with the series expansion we infer the values of the 
parameters 

(20) 

with s specified in equation (18). 
Exactly soluble examples of equation (1) show that the stated approximation for G 

is close to exact solution even for discontinuously varying k ( x ) .  The reason is that S is 
proportional to the derivative of s, so that the error accumulates relative slowly. Of 
course, for a single step of k ( x )  the result is exact by the nature of our derivation in 0 5 .  

7. Reflection coefficient for electromagnetic waves 

We are interested in determining the reflection coefficient r for a given layer ( x o ,  x l ) ,  
surrounded with homogeneous media on both sides. The definition is, according to 
equation (2), r = e-2'ko"oB(xo)/A(xO). Also the boundary condition B ( x )  = 0 for x > x l  
must be taken into account. For the two polarisations r refers to the electric and 
magnetic field amplitudes, respectively. The reflectance is equal to lri2. 

Since B(xo) is unknown, we have to calculate G(xo, x l )  in order to relate v o  = 
(A(xO),B(xO))  to VI = (A(xl) ,O).  Once s from equation (18) is calculated, the 
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parameters T and r / /  from (20) entering the expression (7) are specified. Then the final 
result follows as 

(21) 

Neither 4 nor Sl, are needed to express the reflectance which is determined solely by the 
parameter T = IsI. Namely, lrI2 = tanh2 Is/ .  

From equation (17) we see that the approximation (21) is justified for small Is / ,  
which corresponds to the WKB approximation, and for all cases where the reflectance is 
extremal, because here the derivative of s vanishes. Actually, for small /si  we obtain 

tanh T = -e-2iko*o(s tanh ~ s l ) / ~ s ~ .  = -e-2ikoxo e2i$ 

which agrees with the WKB approximation (Babikov 1976). More generally, the result 
(21) is in agreement with the formula derived by Greenewalt et a1 (1960) which was 
established by a less general approach based on the Ricatti differential equation for the 
reflection coefficient itself (for TE polarisation only). 

8. Eigenmodes of the field 

In this section we attack the eigenvalue problem corresponding to the wave equation (1) 
with the boundary conditions that the field U vanishes at the boundaries xo and xl. We 
may think of the electromagnetic field in a stratified dielectric between two perfectly 
conducting plates, or, e.g., of a vibrating string fixed at the end points x o  and xl. Our 
aim is to determine the eigenmodes. 

First, one should notice that uo need not be zero if uo vanishes. Hence, in spite of the 
boundary conditions the amplitude vectors uo and 01 = G(xo, x l ) u o  do not vanish in 
general. So we choose an arbitrary uo = (Ao,  BO) and require the boundary conditions 

U0 = (U09 f o )  = 0, u i  = (Goo, f i )  = (00, G'fi) = 0, (23) 

to be fulfilled. This system of equations for the unknowns A .  and Bo has a non-trivial 
solution (which implies that U ( X )  = (G(xo, x)zl0, f ( x ) >  is non-trivial) if the determinant 
vanishes, which means 

Im([Gl1 exp(-ikOxo) - G12 exp(ikoxo)l exp(iklxl)} = 0. 

With equations (7) and (20) this condition determines the eigenfrequencies, and is 
equivalent to 

where by r(xo, XI)  the reflection coefficient corresponding to the layer (xo,  xl) is denoted 
(see equation (21)). The present method apparently leads to the generalisation (24) of 
the well known WKB result k ( y )  dy = n r ,  n = 1, 2, . . . , which is correct only if the 
corresponding reflection coefficient r is negligible. 

The initial amplitude vector uo arising from equation (23) together with the 
transmission matrices then determines the eigenmodes, according to equation (4). 
These, of course, must be standing waves, so that Bo = A,* might be required in addition 
to the boundary conditions (23). 
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The derivation is essentially the same if other boundary conditions are used. For 
instance, if u f ( x o )  = 0 and u ( x I )  = 0, we get 

9. Adiabatic invariant of the harmonic oscillator 

In order to describe the motion of a damped classical harmonic oscillator with 
continuously varying frequency k and damping parameter A = - v f / 2 v  we require the 
solution U to be real for all values of time x .  It suffices to state that uo = (Ao, A,*), as the 
required condition is then automatically satisfied for each x as was pointed in 0 3. The 
energy of the oscillator averaged over the period of U is proportional to kJ,  where 
J = v/AI2 is the adiabatic invariant (Landau and Lifshitz 1960, Arnol’d 1974). If 
expression (7) with the parameters from (20) is substituted into v ( x )  = G(xo, x ) v o ,  we 
have 

(25 )  J = (v/vO)[co~h(2~s/)+sinh(2~s/)  cos(arg s + 2 argAo)]Jo. 

The parameter s is taken from equation (18), while J o  and v o  refer to the initial values. 
The definition A = - v ’ / 2 v  can be integrated in order to express v with the damping 
parameter A. According to equation ( 2 5 ) ,  the result 

describes the decay of energy if the frequency k is constant, and, in addition, if v varies 
slowly in comparison with e2@ so that s from equation (18) can be neglected. The 
general case, where J varies due to damping and due to adiabatic changes of the 
parameters k and v, is then described by equation ( 2 5 ) .  In absence of damping and in 
the limit Is1 + 0 the adiabatic invariant is seen to be conserved, so that energy varies in 
proportion to frequency (Landau and Lifshitz 1960). 

If the frequency is discontinuous, the formalism must be applied with care. In 
addition to the continuity of U we have the continuity of the velocity U’, but not 
necessarily of v- lu‘ .  Thus, if v and k are discontinuous simultaneously, the preceding 
results can not be correct. 

The second term in the brackets of equation (25) explains the dependence of J upon 
the initial phase. This information could be used in the case of weak parametric 
excitation whose period is much longer than the period of U. Suppose that v is 
continuous and k changes discretely in such a manner that the argument of the cosine is 
zero or T all the time. We see then that J is exponentially increasing or decreasing, 
respectively. This is consistent with the behaviour of U under parameter excitation 
(Landau and Lifshitz 1960, Arnol’d 1974, Jordan and Smith 1977). 

10. Comments 

Perhaps the present matrix method of solving the one-dimensional wave equation (1) 
could be improved if different discrete approximations, e.g. with piecewise linear 
functions instead of step functions, were used. Beside this extension of the accuracy 
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another important generalisation is desirable. Namely, the restriction that k and v are 
real should be removed so that one could treat absorbing media, and the bound states of 
quantum mechanical systems. 
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